Are clusters found in one dataset present in another dataset?
نویسندگان
چکیده
In many microarray studies, a cluster defined on one dataset is sought in an independent dataset. If the cluster is found in the new dataset, the cluster is said to be "reproducible" and may be biologically significant. Classifying a new datum to a previously defined cluster can be seen as predicting which of the previously defined clusters is most similar to the new datum. If the new data classified to a cluster are similar, molecularly or clinically, to the data already present in the cluster, then the cluster is reproducible and the corresponding prediction accuracy is high. Here, we take advantage of the connection between reproducibility and prediction accuracy to develop a validation procedure for clusters found in datasets independent of the one in which they were characterized. We define a cluster quality measure called the "in-group proportion" (IGP) and introduce a general procedure for individually validating clusters. Using simulations and real breast cancer datasets, the IGP is compared to four other popular cluster quality measures (homogeneity score, separation score, silhouette width, and weighted average discrepant pairs score). Moreover, simulations and the real breast cancer datasets are used to compare the four versions of the validation procedure which all use the IGP, but differ in the way in which the null distributions are generated. We find that the IGP is the best measure of prediction accuracy, and one version of the validation procedure is the more widely applicable than the other three. An implementation of this algorithm is in a package called "clusterRepro" available through The Comprehensive R Archive Network (http://cran.r-project.org).
منابع مشابه
Improvement of density-based clustering algorithm using modifying the density definitions and input parameter
Clustering is one of the main tasks in data mining, which means grouping similar samples. In general, there is a wide variety of clustering algorithms. One of these categories is density-based clustering. Various algorithms have been proposed for this method; one of the most widely used algorithms called DBSCAN. DBSCAN can identify clusters of different shapes in the dataset and automatically i...
متن کاملتشخیص پیوسته میزان استرس در طول رانندگی با استفاده از روش خوشهبندی Fuzzy c-means
Stress is one of the main causes of physical and mental disorders leading to various types of diseases. In recent two decades, stress level detection during driving to avoid accidents has attracted much of researchers’ attentions. However, the existing studies usually neglect this fact that stress level during driving varies due to irregular events. Contrary to the previous works, this paper de...
متن کاملEvaluation of Updating Methods in Building Blocks Dataset
With the increasing use of spatial data in daily life, the production of this data from diverse information sources with different precision and scales has grown widely. Generating new data requires a great deal of time and money. Therefore, one solution is to reduce costs is to update the old data at different scales using new data (produced on a similar scale). One approach to updating data i...
متن کاملUsing a Data Mining Tool and FP-Growth Algorithm Application for Extraction of the Rules in two Different Dataset (TECHNICAL NOTE)
In this paper, we want to improve association rules in order to be used in recommenders. Recommender systems present a method to create the personalized offers. One of the most important types of recommender systems is the collaborative filtering that deals with data mining in user information and offering them the appropriate item. Among the data mining methods, finding frequent item sets and ...
متن کاملخوشهبندی دادهها بر پایه شناسایی کلید
Clustering has been one of the main building blocks in the fields of machine learning and computer vision. Given a pair-wise distance measure, it is challenging to find a proper way to identify a subset of representative exemplars and its associated cluster structures. Recent trend on big data analysis poses a more demanding requirement on new clustering algorithm to be both scalable and accura...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biostatistics
دوره 8 1 شماره
صفحات -
تاریخ انتشار 2007